6 research outputs found

    Movement variability and sensorimotor cortical activation during forward and backward walking

    Get PDF
    Previous research has used functional near-infrared spectroscopy (fNIRS) to show that motor areas of the cortex are activated more while walking backward compared to walking forward. It is also known that head movement creates motion artifacts in fNIRS data. The aim of this study was to expand on previous findings by examining cortical activation during forward and backward walking, while also measuring head movement. We hypothesized that greater activation in motor areas while walking backward would be concurrent with increased head movement. Participants (N=8) performed forward and backward walking on a treadmill. Participants wore motion capture markers on their head to quantify head movement and pressure sensors on their feet to calculate stride time. fNIRS was placed over motor areas of the cortex to measure cortical activation. Measurements were compared for forward and backward walking conditions. Stride time was significantly shorter during backward walking, but not significantly more variable. There were no significant differences in activation for motor areas of the cortex when outliers were removed. However, when stride time variability during forward walking increased, there was increased activation in the primary motor cortex. Greater head movement during backward walking was due to slow drift, which would not influence fNIRS results. Consistent with previous findings, the positive correlation between motor cortex activation and stride time variability suggests that forward walking variability may be represented in the primary motor cortex

    Stride-time variability is related to sensorimotor cortical activation during forward and backward walking

    Get PDF
    Previous research has used functional near-infrared spectroscopy (fNIRS) to show that motor areas of the cortex are activated more while walking backward compared to walking forward. It is also known that head movement creates motion artifacts in fNIRS data. The aim of this study was to investigate cortical activation during forward and backward walking, while also measuring head movement. We hypothesized that greater activation in motor areas while walking backward would be concurrent with increased head movement. Participants performed forward and backward walking on a treadmill. Participants wore motion capture markers on their head to quantify head movement and pressure sensors on their feet to calculate stride-time. fNIRS was placed over motor areas of the cortex to measure cortical activation. Measurements were compared for forward and backward walking conditions. No significant differences in body movement or head movement were observed between forward and backward walking conditions, suggesting that conditional differences in movement did not influence fNIRS results. Stride-time was significantly shorter during backward walking than during forward walking, but not more variable. There were no differences in activation for motor areas of the cortex when outliers were removed. However, there was a positive correlation between stride-time variability and activation in the primary motor cortex. This positive correlation between motor cortex activation and stride-time variability suggests that forward walking variability may be represented in the primary motor cortex

    When Coordinating Finger Tapping to a Variable Beat the Variability Scaling Structure of the Movement and the Cortical BOLD Signal are Both Entrained to the Auditory Stimuli

    Get PDF
    Rhythmic actions are characterizable as a repeating invariant pattern of movement together with variability taking the form of cycle-to-cycle fluctuations. Variability in behavioral measures is atypically random, and often exhibits serial temporal dependencies and statistical self-similarity in the scaling of variability magnitudes across timescales. Self-similar (i.e. fractal) variability scaling is evident in measures of both brain and behavior. Variability scaling structure can be quantified via the scaling exponent (α) from detrended fluctuation analysis (DFA). Here we study the task of coordinating thumb-finger tapping to the beats of constructed auditory stimuli. We test the hypothesis that variability scaling evident in tap-to-tap intervals as well as in the fluctuations of cortical hemodynamics will become entrained to (i.e. drawn toward) manipulated changes in the variability scaling of a stimulus’s beat-to-beat intervals. Consistent with this hypothesis, manipulated changes of the exponent α of the experimental stimuli produced corresponding changes in the exponent α of both tap-to-tap intervals and cortical hemodynamics. The changes in hemodynamics were observed in both motor and sensorimotor cortical areas in the contralateral hemisphere. These results were observed only for the longer timescales of the detrended fluctuation analysis used to measure the exponent α. These findings suggest that complex auditory stimuli engage both brain and behavior at the level of variability scaling structures

    Synchronization dynamics modulates stride-to-stride fluctuations when walking to an invariant but not to a fractal-like stimulus

    Get PDF
    Walking with different types of cueing/stimulus (i.e. auditory, visual) has been shown to alter gait variability, thus emerging as an innovative therapeutical tool to restore abnormal gait variability in clinical populations. However, the majority of the research in this area has focused on auditory stimuli while visual stimuli are an understudied alternative that needs more attention, particularly due to the natural dependence on vision during walking. Furthermore, the time differences between the occurrences of the walking steps and the sensory cues, also known as asynchronies, have also received minimal attention, even though the ability to synchronize with different stimuli is of great importance. This study investigated how synchronizing to visual stimuli with different temporal structures could affect gait variability and the respective asynchronies. Participants performed four 15-min walking trials around an indoor track while wearing insole footswitches for the following conditions: a) self-paced walking, and b) walking with glasses that instructed the subjects to step in sync with a virtual moving bar. The stepping occurences of the moving bar were presented in three different ways b1) non-variable, b2) variable and b3) random. Stride times and asynchronies were determined, and the mean values along with the fractal scaling (an indicator of the complexity) in their time series, were calculated. The fractal scaling of the stride times was unaltered when participants walked with the variable stimulus as compared to the self-paced walking condition; while fractal scaling was significantly decreased during the non-variable and random conditions, indicating a loss of complexity for these two conditions. No differences were observed in the means or the fractal scaling of the asynchronies. The correlation analysis between stride times and asynchronies revealed a strong relationship for the non-variable condition but a weak relationship for both variable and random conditions. Taken together, the present study results supports the idea of an existing internal timekeeper that exhibits complexity. We have shown that this complex pattern is similar regardless of the stimulus condition, suggesting that the system’s complexity is likely to be expressed at the task performance level – asyncrhonies – when walking to a stimulus. Thus, future research in sensoriomotor gait synchronization should focus and further explore the role of the asynchronies, as it may be of clinical significance

    Improving Elderly Gait Using a Structured Auditory Stimulus

    No full text
    Previous studies show increased gait variability is correlated with fall risk in elderly subjects. One gait rehabilitation method is synchronizing gait to a rhythmic auditory stimulus (RAS). RAS reduces variability associated with fall risk, but does not represent stride-to-stride fluctuations found in gait of healthy individuals. Research has found that fractal structures (pink-noise) represent variability present in healthy gait. Therefore, rehabilitation using a fractal structured auditory stimulus (SAS) to restore characteristics of healthy gait could prove more effective than RAS. This experiment examines the effects of synchronized walking with SAS compared to self-paced walking, in healthy older and younger participants. We hypothesized that the gait variability of older individuals will approach values exhibited by healthy younger adults when walking is synchronized with a pink-noise SAS. Participants walked self-paced around an indoor track for 15 minutes while wearing footswitches. We used footswitch data to create a pink-noise structured version of Beethoven’s “Für Elise” to match participants’ preferred walking characteristics. Participants then repeated the 15-minute walk while synchronizing their gait to SAS. Baseline and SAS stride interval time series were analyzed to determine amount (mean and coefficient of variation) and structure (DFA α) of gait variability. Preliminary data is consistent with the expectation that baseline values for DFA α are lower for the older group than the younger group, and the older group’s DFA α increases from baseline to SAS. This result shows that gait variability of older individuals can be driven with SAS and supports the feasibility of rehabilitation using SAS

    Age-related visual dynamics in HIV-infected adults with cognitive impairment.

    No full text
    OBJECTIVE: To investigate whether aging differentially affects neural activity serving visuospatial processing in a large functional neuroimaging study of HIV-infected participants and to determine whether such aging effects are attributable to differences in the duration of HIV infection. METHODS: A total of 170 participants, including 93 uninfected controls and 77 HIV-infected participants, underwent neuropsychological assessment followed by neuroimaging with magnetoencephalography (MEG). Time-frequency analysis of the MEG data followed by advanced image reconstruction of neural oscillatory activity and whole-brain statistical analyses were used to examine interactions between age, HIV infection, and cognitive status. Post hoc testing for a mediation effect of HIV infection duration on the relationship between age and neural activity was performed using a quasi-Bayesian approximation for significance testing. RESULTS: Cognitively impaired HIV-infected participants were distinguished from unimpaired HIV-infected and control participants by their unique association between age and gamma oscillations in the parieto-occipital cortex. This relationship between age and gamma was fully mediated by the duration of HIV infection in cognitively impaired participants. Impaired HIV-infected participants were also distinguished by their atypical relationship between alpha oscillations and age in the superior parietal cortex. CONCLUSIONS: Impaired HIV-infected participants exhibited markedly different relationships between age and neural responses in the parieto-occipital cortices relative to their peers. This suggests a differential effect of chronological aging on the neural bases of visuospatial processing in a cognitively impaired subset of HIV-infected adults. Some of these relationships were fully accounted for by differences in HIV infection duration, whereas others were more readily associated with aging
    corecore